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Structure of hard-sphere metastable fluids
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A rational-function approximation method to analytically derive the radial distribution funggiopand the
structure factoiS(q) of a hard-sphere fluid is revisited. The method provides a fluid structure thermodynami-
cally consistent with a given equation of state. The Carnahan-Starling and a recently derivet%Bade
equations of state are considered. While the Carnahan-Starling equation leads to fug(clicarsd S(q) even
for densities larger than the crystalline close-packing density, their physical value is questionable already in the
metastable fluid region. In the case of the much more reliablé Badation of state, the method shows the
existence of a threshold density, beyond which no meaningful fluid structure can be derived. This threshold
value, whose signature is a diverging slopeg@f) at the contact distance, coincides with the one associated
in the literature with the glass transitiof§1063-651X96)01805-3

PACS numbgs): 05.20.Dd, 61.20.Gy, 61.20.Ne

[. INTRODUCTION simulation, presents a fluid-solid transition at
n=ng=0.497, [2] where = (7/6)po® is the packing

The radial distribution functiodRDF) g(r) and its close fraction, o being the hard-sphere diameter. The fluid be-
relative  the (statig structure factor S$(q)=1+ comes metastable beyong and, at abouty= 74=0.56, it
pfdre™ "% g(r)—1], wherep is the density, are the basic starts to form a glas$3]. The simulation results for the
guantities used to discuss the structure of a fldifl The glassy system are compatible with an empirical equation of
importance ofg(r) arises from the fact that, given the form state different from that of the fluid, with a diverging pres-
of the potential of the intermolecular force, if the RDF is sure at the random close-packing valge 7gcs~=0.64[3].
known as a function op and the temperaturg, the standard The compressibility factor for a hard-sphere fluid has the
methods of statistical mechanics allow for the determinatiorvery simple form
of all the equilibrium properties of the fluid. The usual ap-
proach to obtairg(r) is through one of the integral equation Z=1+479(c"), 1.2
theories. However, apart from requiring in general hard nu-
merical labor, a disappointing aspect is that the substitutioinvolving only the contact value of the RDF. From the avail-
of the (necessarily approximate values ofj(r) obtained able exact solution of the Percus-Yevi@RY) integral equa-
from them in the(exac) statistical-mechanical formulas may tion for hard sphere§4], this contact value may be deter-
lead to the so-called thermodynamic inconsistency problemmined yielding
This problem appears when deriving the equation of state for
the fluid using either the virial theorem or the fluctuation 1+29+37?
theorem, because both routes lead to different results. In par- ZPY:W- 1.3
ticular, the thermodynamic relation

1 g The RDF of the PY theorygey(r), is in good agreement
—=—(p2) (1.  with simulation results in the stable fluid regiph]. Using
X dp this RDF, one may readily derive the result for the isother-

mal compressibilit
between the isothermal susceptibilityw=kT(dp/dp)t P y

=$5(0) (wherek is the Boltzmann constant arglthe pres- (1-7)*
sure and the compressibility factof=p/pkT is not satis- XPY= 1522 (1.9
n

fied. Therefore an alternative approach to the derivation of

g(r) avoiding this problem is certainly desirable. ) , . , )
Although it involves the simplest mathematical function Which, as can be easily verified, is not thermodynamically

to represent molecular interactions, a model fluid of harcfonsistent with Eq(1.3). Nevertheless, both the equation of

spheres exhibits the most important structural features foungt@te derived from the isothermal compressibility as well as

in real fluids. This system, which has been extensively studth€ one given by Eq(1.3) yield results that compare reason-

ied both within the integral equation theories and througt@Ply well to the simulation data. In fact, by interpolating
these two equations of state one can obtain(ienomeno-

logical) Carnahan-StarlingCS) equation of stat¢5]
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53 STRUCTURE OF HARD-SPHERE METASTABLE FLUIDS 4821
which improves the agreement with the values of numerical o

simulations. As far as the RDF is concerned, the improve- G(t)= fo dre”"rg(r)

ment of the CS equation of state over the PY theory, espe-
cially nearr = ¢, was concluded from the results of a recent
attempt[6] to derive the structural properties of a hard-
sphere fluid without invoking any of the integral equation
theories. The key idea of the method is to use a rationalwhere the second equality serves to define the auxiliary func-
function approximation for an auxiliary function in Laplace tion ®(t). The structure factor is related @(t) by

space and to make this function compatible with some basic

:L[l—etcp(t)]*l (2.)
129 ' '

physical requirements. The simplest approximation yields t°G(t)—1
gpy(r), while the next simplest one involves two free param- S(a)=1-24y Re——z— R 2.2
eters that may be fixed by imposing prescriZednd y. This =1
second approximation coincides precisely with the generalrrom Eq.(2.1) it follows that
ized mean spherical approximatipf] and of course thermo-
dynamic consistency is easily achieved here. 1 =
It must be pointed out that an obvious unphysical feature g(r)= o nZl @n(r—n)O(r—n), 2.3

common to both the PY and CS equations of state is that the
pressure does not diverge at any packing fraction Sma”evrvhere(@ is the Heaviside step function angh(r) is the
thf.inl 77:1&. Quite ;’ecer?tlya thﬁ confwlpgtati?]n Olf ;he eiﬁhth inverse Laplace transform of-t[®(t)] ". As a conse-
virial coefficient of a hard-sphere flui as led to the o ; ;
construction of an equation IC()3f state irEB 1he form of a ,Padpguence of Eq.(2._3), It is guaranteed thay(r) vanishes if

: ; <1 for all packing fractions and its contact value is given
approximant(4,3) [cf. Eq. (2.11) below] that is presumed to in terms of 5 by
be very accurate even in theetastabldluid region[9]. In
that region, due to the fact that the Paal@proximant di- 1 t2
verges at a density near the crystalline close-packing value g(1t)=- o0 lim m (2.9
7= no=m\2/6=0.7405 (which is physically more reason- 7t
able than a divergence at=1), the isothermal compress-
ibility preQIcted by the C$ equauqn Is about 10% Igrger thar]finite [6] suggest that a simple form for the auxiliary function
that obtained from the Padgproximant. Therefore it seems is the ratio of two polynomialsb(t) =P, (t)/P,(t) with
natural to try to examine the effect of this recent equation O]Jn=m+2 and n-m=4. We will call tr?is thg rational-
state on the structure of the metastable fluid using th '

. i L function approximation(RFA). If n=3 and m=1, the
method outlined abovg6]. This is the main aim of the method leads to the solution of the PY equation. The next
present paper.

_ ) simplest approximation is=4 andm=2, namely,
The paper is organized as follows. In Sec. Il we start by

briefly describing the method to derive analytical expressions 14 S;t+ Syt2+ Sat3+ Syt
for the RDF consistent with a given equation of state. Em- d(t)= T Ll ,
phasis is put on the fact that physically meaningful results 1 2

cease to .be obtained Whenevgrbecomgs smaller .than where, due to the requirements tift) has to satisfyf6],
xpy- We find that they derived from the Pad@t,3) equation L., S,, S,, andS; can be expressed as linear functions of

of state is only larger thapy for »=0.5604. This value | , ands,, which remain so far as arbitrary. Now, in view of
practically coincides withzg, thus suggesting that our gq. (2.4), the relation

method is capable of predicting the presence of the glass

transition. The structure of the fluid in the metastable region L,=—3(Z—-1)S, (2.6)
as obtained with this equation of state is hardly distinguish-

able from the one obtained from the CS equation of stateis satisfied for a giverZ. Furthermore, prescribing a given
although some peculiar and subtle behavior is observed ag leads to the equation

one approachesy . The paper is closed in Sec. lll, where we

The physical requirements that ensure tha&nd y are

(2.5

further elaborate on our findings and provide some conclud- 1-7\? 1-9
ing remarks. 1524 [Lo+3(Zpy—1)S,]| L, — 284+ o
_X_XPY:O. 2.7
Il. RATIONAL-FUNCTION APPROXIMATION METHOD 247

The method we are going to use was introduced in Refgypstitution of Eq.(2.6) into Eq. (2.7) yields a quadratic
[6] and we urge the interested reader to look for a detaile@quation forS,. Sinceg(r) is a positive definite quantity,
description there. Here we will restrict ourselves to quote thes(t) cannot be zero for real and positite Therefore,L,
results required for our later development and for simplicitymust be positive. This in turn impligsf. Eq. (2.6)] thatS,
seto=1 without loss of generality. First we introduce the must then be negative and so out of the two roots of the
Laplace transform ofg(r): quadratic equation one can only take the one given by
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9'(17)=7— : (2.9
127 A

L_l)
XPY

1-7 [ { z-1 1’2] 1 LSyt (L—LyS,
Sy=——) 1|1+
36n(2—1%) Z—Zpy
(2.9

The other result has to do with the relation betwega *)
Notice that even in this case, depending on the choicg of and g’(1*) with the short wavelength behavior &(q),
andy, S, may be(a) indeed negative i¥> xpy, (b) positive  namely,
it xpy(Zpy—3)/(Z—3)<x<xpy, oOr (c) complex if
X<xpv(Zpy—3)/(Z—3). This takes into account the fact co
thatZ>Zpy, which is the obvious choice. Cagle) leads to S(q)= 1+2477[g(1+)_§q_[gf(1+)
a g(r), which is a real function but exhibits nonphysical q
features, while casé) yields a complex RDF. The appear- sing
ance ofZpy and ypy in Eg. (2.8 and in the above inequali- +9(1%)]—=+-- } (2.10
ties is not fortuitous but due to the fact that the propé2d) q
may be understood as the simplest extension of the PY
theory (which corresponds th,=S,=0). In order to get specific results, the method just described

OnceS, has been determined, the procedure is completetequires as inpu and y. Since we wang(r) to be ther-

upon substitution in the corresponding equations. Two addimodynamically consistent, it is only necessary to chabse
tional results, not explicitly stated in Rgb] but that will be  asy would follow from Eq.(1.1). This was already done for
used below, are now given. The first one concerns the valuthe CS equation of state, E(L.5), in Ref.[6]. In this paper
of the derivative of the RDF at contact, a quantity that hasve will consider a more refined equation of state constructed
been a subject of recent inter¢40—17 and whose expres- from the knowledge of the first eight virial coefficieri& 9],
sion as arising in the RFA method is namely, the Pad&,3)

, 1+1.024 385+ 1.104 53%?—0.461 147 2)°—0.743 038 2*
43~ 1—2.975 615+ 3.007 000;°— 1.097 758;°

(2.11

A comparison between the CS and the Padgations of accurate. This is particularly noticeable close to the contact
state shows that the differences between both equations bealue. The improvement over the PY theory in that region
come significant in the metastable fluid region may be further judged from a comparison with estimated
(7>n=0.497). In fact, while Z,; diverges for values ofg’(1%) recently obtained from Monte Carlo simu-
7~ 17o=0.7405, Zs does it for y=1. The most important lation by Smithet al.[12]. These authors give values of the
feature for our purposes is the fact thais is always larger ~finite-difference  derivative g.(1")=g(1")In[g(1+e¢)/
than xpy, but x;3 becomes smaller thanypy for  Y(1—e€)]/2¢e, wherey(r) is the cavity distribution function,
7=0.5604. It must be pointed out that the occurrence of @nd they set=0.05. For the sake of carrying out a consis-
threshold value for whicly= ypy is not peculiar to the Pade tent comparison, in Table | we give the values of tlatera)
equation of state, but would also happen for any equation dfinite-difference  derivative g_,(1")=g(1")In[g(1+e€)/
state yielding a diverging pressure fgrc1. However, what  g(17)]/ €, also withe=0.05, although we could provide the
is indeed a property of th&;,, not necessarily shared by

those other equations of state, is the fact that the threshold A
value coincides almost perfectly with the value associated
[3] with the glass transition namely, 7,=0.56. In terms of

the RFA described above, this means that such a threshold
value may indicate the appearance of a different structure in
the system which would then cease to be a fluid beyond
7=0.5604. Therefore, in the following we will identify the

g(r)—gex(7)

TS Y 0 O OO O

o B
o
o
LI e e

threshold withzny. We will return to this point later on.
The effect ofZ on the structure of the stable fluid as 0.00
prescribed by the RFA outlined above may be assessed from —
Figs. 1 and 2. There we have plotted the difference —005 L2 e ]
g(r)—gpy(r), where the differentg(r) have either been 10 12 ta 18 18 20

taken from simulatiori13] or derived with the RFA method

US'”QZ_:ZCS arlle=Z4’3. As a simple extension Qf the PY FIG. 1. Plot of the differenceg(r)— gpy(r) versus distance for
theory, itis SatlsfaCltOry that'the model 'proposed in @) ~7=0.3403. The solid line refers to the Pa@e3) equation of state,

for @ (t) succeeds in capturing the major trends observed ifthe dashed line refers to the Carnahan-Starling equation of state,
the simulation, providing improvements wheyg(r) is less  and the circles correspond to the simulation resulg.
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FIG. 2. Same as in Fig. 1, but foy=0.4843. :

actual value of this derivative; cf. EQ.9). Once again, the
RFA method provides an accurate description of the struc-
ture close to the contact distance, as seen through the very 7
good values for the slope of the RDF. This is particularly g¢(r)
striking when using the CS equation of state. It should be 6
stressed though that the value of the finite-difference deriva-
tive is highly sensitive to the choice of the discretization 5
interval e, especially for the higher densities. Therefore,
g..(1") may differ appreciably frong’(1"). For instance, 4 B e
in the case of the CS equation of state and §er0.4712, 1.00 1.01 1.02 1.03 1.04 1.05
Eq. (2.9 yieldsg'(1")=—49.49. r

Now we turn to the metastable region. We have already
pointed out that the Padd,3) equation of state is expected  FIG. 3. Radial distribution functiong(r) for »=0.558(a) in
to be superior to the CS equation in this region because th#€ range &r=4 and(b) detail of the region close to the contact
latter predicts a finite pressure up ig=1. Therefore, one point. Th_e solid lines refer to the Pade,S)_equatlon _of state, the
also expects that the RDF obtained from the RFA method igashed Ilngs refer to the Carnahan-Starling e.quatlon of state, and
more reliable when using, ; than Zcs and that the differ- the dotted lines correspond to the Percus-Yevick results.
ences between both equations of state will be greater near the N , )
contact point. Note that ag approachesy, from below, tact valuegy(1™) for th_e CS and the Pac(é,S} equations of
Yaslxpy goes to 1. This means th&,, as given by Eq. state are not all that dlff_ererﬁ;4 for the latter is almost zero,
(2.'8), goes to O from below. As a consequence,S° that the cprrespondlng RDF should become very similar
9'(1%)~1/S,— — oo, as follows from Eq(2.9). In terms of  © 9ev(r) (thh corresponds t6,=0), except in the prox-
the RDF, this is translated into an abrupt change near thnity of r=1“ - A convenient measure of this behavior is
contact point wheny is close ton,. We illustrate this be- through the “width™ & of g(r) in the neighborhood of the
havior in Fig. 3 fory=0.5580. In the scale of Fig(8), the contact point defined by
three different RDF’s are hardly distinguishable. However, N .
the enlargement around the contact paistl™ reveals a 5= 9(17)—gev(17)
clear distinction between them. The features displayed in lg’(1%)]
Fig. 3(b) may be understood by noticing that, while the con-

and shown graphically in Fig. 4. Both equations of state

TABLE I. Values ofg.(1") as obtained from simulation, from yijeld decreasing values &f with increasingz in the meta-
the Percus-YevickPY) theory, andlfrom the RFA method using the gtgple region. However, in the case gf(r), 6—0 as
Carnahan-StarlingCS) and the Padé4,3) equations of state. n— 4. The CS equation of state would only lead to such a
singularity ingeg(17) in the limit 7— 1.

T T ST S S T O Y Y Y U AR TS 8

TT T T T T T 7T rTaT

(2.12

n Simulatiorf PY €S Pada4,3 To complement the above analysis, it is instructive to con-
0.1571 -1.5%0.02 -1.35 -1.53 -1.59 sider the behavior of the structure fact(iq) near»y. This
0.2094 -2.86:0.03 230 277 -2.89 is shown in Figs. 5 and 6 fo,=0.558. Again, no differ-
0.2618 -4.890.07 -3.70 -4.80 501 ences are apparent in the scale of Fig. 5. Apart from this, the
0.3142 8.170.10 .5.80 817 855 effect ofg’(17) asn— 54 may also be ascertained from the
0.3665 -13.86:0.13 -9.00 -13.88 -14.63 short WaVElength behavior S(Q), as given in Eq(21()
0.4189 23.640.27 13.97 23.77 2552 This becomes manifest in Fig. 6, where one can see that
0.4712 4126 1.34 2188 4137 4582 whereas both the result for the PY approximation and the

one derived from the RFA method using the CS equation of
*Referencd12]. state have already attained the “high limit for gq=250, in
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FIG. 4. “Width” ¢ as defined in Eq(2.12) versus the packing
fraction . The solid line refers to the Pad4,3) equation of state,
while the dashed line refers to the Carnahan-Starling equation gf
state.

FIG. 5. Structure factorS(q) versus wave numbeq for
=0.558. The solid line refers to the Pa@e3) equation of state,
e dashed line refers to the Carnahan-Starling equation of state,
and the dotted line corresponds to the Percus-Yevick result.

the case o¥ 4 3 this practically happens far=5000, a value ] o .
that roughly coincides with 8 1. The fact that in the range the two lowest-order rational approximations of the auxiliary
=250 the curves corresponding to PY and the Pel® function ®(t) defined in Eq(2.1) have been considered. In
are indistinguishable is again related to the almost zero valuerinciple, one could consider higher orders by fixing some
for S,. extra quantities. In view of the comparison with the simula-
Before we close this section, some comments on the relion results, one would resonably expect that the agreement
sults one gets with the RFA method fge> 4 are pertinent. bétween simulation and the results of the RFA method,
Both in the PY approximation and usirys, the method yvhlch is already very good, could even improve on increas-
would in principle lead to “meaningful” RDF’s and struc- ing the order.
ture factors up toy=1. These, however, would have the In this paper we have applied the method to study the
drawback(inherent in the corresponding equations of state Structure of the hard-sphere fluid both in #tableand in the
of missing the fact that ajy<1 the system should reach a Metastableegions. We performed a comparison between the
crystalline close-packed structure, so their value is questiorfesults obtained from the CS and the recently derived Pade
able even in the metastable fluid region. In the case of4.3 equations of state. In the stable fluid region both equa-
Z,3, as pointed out above, > 74, S, first becomes posi- tions lead to similar RDF's th_at improve S|gn|f|ca_ntly the
tive and then complefwhen x4 s< xpy(Zpy— 2/(Z4 5~ 2), agreement of the PY theory with simulation, especially near
i.e., 7>0.6841. A positive S, leads to a pole irG(t) [as the contact point. For the metastaple _branc.h, however, the
defined in Eq(2.1)] on the positive real axis, which in turn WO equations of state give rise mlalltat_lvelydﬁferent pre-
implies the unphysical result that the correspondg(@) dlctlc_Jns. In the case of the CS equation, the RF_A method
grows exponentially with . If one overlooks this feature and Provides a plausible RDF up to a packing fractigs-1,
proceeds with the calculation &{(q) through Eq.(2.2), the aIthou_gh we are fully aware that §uch an RDF s_;hould be
resulting “structure factor” appears to have a “reasonable” meaningless beyond the crystalline close-packing value
shape. However, taking the inverse Fourier transform of the7o= m\2/6. On the other hand, when using the P&ti8), a
analytical expression that one obtains 88q), yields a non-  thresholdvalue 74=0.5604 exists, beyond which the struc-
vanishing “g(r)” for r<1, which is again unphysical. The ture of 'ghe system as predicted by the RFA method becomes
conclusion is then that the RFA method is clearly indicatingunphysical As pointed out earlier on, this threshold value
that the Padd4,3) equation of state is only useful for the May depend on the equation of state one uses. The question

fluid phase (including a metastable fluid region, i.e., IS then whether this numerical estimate will remain unaltered
n<n,. It is interesting to mention that Sanchgg] had if a different but still accurate equation of state is considered.
already suggested this to be the case. The recent evidence clearly indicates that the real equation of

state of the hard-sphere fluid should include a divergence at
the close-packing fractiomg. Thus, by considering Alder-
Hoover approximantgL5], which explicitly contain a simple
The results given in the preceding section lend themselvegole atn,, we may attempt to answer such a question. It is
to further elaboration. First of all, it should be clear at thisrewarding that the Alder-Hoover approximant3,3) and
stage that the RFA method is particularly advantageous, ag,3 yield the estimates 0.5545 and 0.5620 fgy, respec-
compared to the integral equation approach, in the sense thtitely. The expectation is therefore that if higher-order virial
all results are analytic. It is true that the method was devisedoefficients were to become available in the future, the cor-
specifically for hard spheres and this might be regarded as esponding Padapproximants will not change appreciably
limitation. However, the key role played by the hard-spherethe estimate of the threshold value. The agreement between
interaction in perturbation theories as well as the use of théhe estimated values ofy; and the one associated in the
RFA method for other closely related systefid] provides literature with the glass transitid8] prompts us to conclude
the proper perspective to assess such limitation. So far, onlhat the method is capable of not only achieving thermody-

[ll. DISCUSSION
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FIG. 6. Short wavelength behavior [88(q) — 1]q%/247 for »=0.558 and two differen intervals. The solid lines refer to the Pa@ded
equation of state, the dashed lines refer to the Carnahan-Starling equation of state, and the dotted lines are the Percus-Yevick results.

namic consistency, but also of indicating the range of densin= 7y, we conjecture, guided by the previous results con-
ties in which a given equation of state may represent a fluidcerning the fluid phase, that this feature should be reflected
The key signal of the transition point is the dramatic increasehrough a change in the qualitative characterSef Two

of the magnitude of the slopg’(1") as one approaches possibilities arise whem approaches;, from above: either
74. On physical grounds, this could be associated with the5, changes from positive to negative or it changes from com-
development of a certain effective “stickiness” for plex to (positive) real. At »= 74, the first change leads to
n— g, @ notion that has also been suggested for harthe requirement(i) xgass xpy [With xgass Obtained from

spheres in other contex{46].

Zgiass USINGg Eq.(1.1)], while the second one impliegi)

It is instructive to examine the question of whether they..& xpy(Zpy—3)/(Zgass— 3), in agreement with condi-
RFA method could also tell us something about the glasstions (a)—(c) for S, stated in Sec. Il. The pressure should be

Although admittedly not on very solid grounds, the follow-
ing speculative arguments indicate that the answer may be

finite and continuous ak,, so thatZy,ss=2Z, 3 at this pack-
ing density. On the other hand, since it has been recently

the affirmative sense. The equation of state of the glass isuggested3] that the pressure exhibits a change in slope on

very much different than that of the fluid atdmpirically)
assumed to be of the general form

A

y A —
9855 1 — nl Prep

(3.2

going from the fluid phase to the glass, we stick to possibility
(ii). From these two conditions we find=2.765 and
nrep=0.6448. It is indeed striking that, as it occurred al-
ready in the case aof,, the estimate provided by the method
for nrepis in excellent agreement with those in the literature
3, 17] and the value oA is close to the one corresponding

HereA is a constant. It must be pointed out that the value 0{0 the fit of simulation resultsA=2.67) [3].

nrep, the random close-packing fraction, is not known pre-

cisely, although reasonable estimates are availdilg For

our purposes, the only important aspect is that it indicates the

density at whiclZ y,s;diverges, and we will provide our own
estimate below. Since E¢3.1) does not represerthe fluid
phase, the method implies th&t as given in Eq(2.8) can-
not be negative in the ranggy < n<nrcp. Therefore, in
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