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A rational-function approximation method to analytically derive the radial distribution functiong(r ) and the
structure factorS(q) of a hard-sphere fluid is revisited. The method provides a fluid structure thermodynami-
cally consistent with a given equation of state. The Carnahan-Starling and a recently derived Pade´ ~4,3!
equations of state are considered. While the Carnahan-Starling equation leads to functionsg(r ) andS(q) even
for densities larger than the crystalline close-packing density, their physical value is questionable already in the
metastable fluid region. In the case of the much more reliable Pade´ equation of state, the method shows the
existence of a threshold density, beyond which no meaningful fluid structure can be derived. This threshold
value, whose signature is a diverging slope ofg(r ) at the contact distance, coincides with the one associated
in the literature with the glass transition.@S1063-651X~96!01805-3#

PACS number~s!: 05.20.Dd, 61.20.Gy, 61.20.Ne

I. INTRODUCTION

The radial distribution function~RDF! g(r ) and its close
relative the ~static! structure factor S(q)511
r*dre2 iq•r@g(r )21#, wherer is the density, are the basic
quantities used to discuss the structure of a fluid@1#. The
importance ofg(r ) arises from the fact that, given the form
of the potential of the intermolecular force, if the RDF is
known as a function ofr and the temperatureT, the standard
methods of statistical mechanics allow for the determination
of all the equilibrium properties of the fluid. The usual ap-
proach to obtaing(r ) is through one of the integral equation
theories. However, apart from requiring in general hard nu-
merical labor, a disappointing aspect is that the substitution
of the ~necessarily! approximate values ofg(r ) obtained
from them in the~exact! statistical-mechanical formulas may
lead to the so-called thermodynamic inconsistency problem.
This problem appears when deriving the equation of state for
the fluid using either the virial theorem or the fluctuation
theorem, because both routes lead to different results. In par-
ticular, the thermodynamic relation
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between the isothermal susceptibilityx[kT(]r/]p)T
5S(0) ~wherek is the Boltzmann constant andp the pres-
sure! and the compressibility factorZ[p/rkT is not satis-
fied. Therefore an alternative approach to the derivation of
g(r ) avoiding this problem is certainly desirable.

Although it involves the simplest mathematical function
to represent molecular interactions, a model fluid of hard
spheres exhibits the most important structural features found
in real fluids. This system, which has been extensively stud-
ied both within the integral equation theories and through

simulation, presents a fluid-solid transition at
h5hF.0.497, @2# where h5 (p/6) rs3 is the packing
fraction, s being the hard-sphere diameter. The fluid be-
comes metastable beyondhF and, at abouth5hg.0.56, it
starts to form a glass@3#. The simulation results for the
glassy system are compatible with an empirical equation of
state different from that of the fluid, with a diverging pres-
sure at the random close-packing valueh5hRCP.0.64 @3#.

The compressibility factor for a hard-sphere fluid has the
very simple form

Z5114hg~s1!, ~1.2!

involving only the contact value of the RDF. From the avail-
able exact solution of the Percus-Yevick~PY! integral equa-
tion for hard spheres@4#, this contact value may be deter-
mined yielding

ZPY5
112h13h2

~12h!2
. ~1.3!

The RDF of the PY theory,gPY(r ), is in good agreement
with simulation results in the stable fluid region@1#. Using
this RDF, one may readily derive the result for the isother-
mal compressibility

xPY5
~12h!4

~112h!2
, ~1.4!

which, as can be easily verified, is not thermodynamically
consistent with Eq.~1.3!. Nevertheless, both the equation of
state derived from the isothermal compressibility as well as
the one given by Eq.~1.3! yield results that compare reason-
ably well to the simulation data. In fact, by interpolating
these two equations of state one can obtain the~phenomeno-
logical! Carnahan-Starling~CS! equation of state@5#
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which improves the agreement with the values of numerical
simulations. As far as the RDF is concerned, the improve-
ment of the CS equation of state over the PY theory, espe-
cially nearr5s, was concluded from the results of a recent
attempt @6# to derive the structural properties of a hard-
sphere fluid without invoking any of the integral equation
theories. The key idea of the method is to use a rational-
function approximation for an auxiliary function in Laplace
space and to make this function compatible with some basic
physical requirements. The simplest approximation yields
gPY(r ), while the next simplest one involves two free param-
eters that may be fixed by imposing prescribedZ andx. This
second approximation coincides precisely with the general-
ized mean spherical approximation@7# and of course thermo-
dynamic consistency is easily achieved here.

It must be pointed out that an obvious unphysical feature
common to both the PY and CS equations of state is that the
pressure does not diverge at any packing fraction smaller
than h51. Quite recently, the computation of the eighth
virial coefficient of a hard-sphere fluid@8# has led to the
construction of an equation of state in the form of a Pade´
approximant~4,3! @cf. Eq. ~2.11! below# that is presumed to
be very accurate even in themetastablefluid region @9#. In
that region, due to the fact that the Pade´ approximant di-
verges at a density near the crystalline close-packing value
h5h05pA2/6.0.7405~which is physically more reason-
able than a divergence ath51), the isothermal compress-
ibility predicted by the CS equation is about 10% larger than
that obtained from the Pade´ approximant. Therefore it seems
natural to try to examine the effect of this recent equation of
state on the structure of the metastable fluid using the
method outlined above@6#. This is the main aim of the
present paper.

The paper is organized as follows. In Sec. II we start by
briefly describing the method to derive analytical expressions
for the RDF consistent with a given equation of state. Em-
phasis is put on the fact that physically meaningful results
cease to be obtained wheneverx becomes smaller than
xPY. We find that thex derived from the Pade´ ~4,3! equation
of state is only larger thanxPY for h&0.5604. This value
practically coincides withhg , thus suggesting that our
method is capable of predicting the presence of the glass
transition. The structure of the fluid in the metastable region
as obtained with this equation of state is hardly distinguish-
able from the one obtained from the CS equation of state,
although some peculiar and subtle behavior is observed as
one approacheshg . The paper is closed in Sec. III, where we
further elaborate on our findings and provide some conclud-
ing remarks.

II. RATIONAL-FUNCTION APPROXIMATION METHOD

The method we are going to use was introduced in Ref.
@6# and we urge the interested reader to look for a detailed
description there. Here we will restrict ourselves to quote the
results required for our later development and for simplicity
sets51 without loss of generality. First we introduce the
Laplace transform ofrg(r ):
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where the second equality serves to define the auxiliary func-
tion F(t). The structure factor is related toG(t) by
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From Eq.~2.1! it follows that
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whereQ is the Heaviside step function andwn(r ) is the
inverse Laplace transform of2t@F(t)#2n. As a conse-
quence of Eq.~2.3!, it is guaranteed thatg(r ) vanishes if
r,1 for all packing fractions and its contact value is given
in terms ofh by

g~11!52
1
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F~ t !
. ~2.4!

The physical requirements that ensure thatZ and x are
finite @6# suggest that a simple form for the auxiliary function
is the ratio of two polynomialsF(t)5Pn(t)/Pm(t) with
n5m12 and n1m>4. We will call this the rational-
function approximation~RFA!. If n53 and m51, the
method leads to the solution of the PY equation. The next
simplest approximation isn54 andm52, namely,

F~ t !5
11S1t1S2t

21S3t
31S4t

4
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2 , ~2.5!

where, due to the requirements thatF(t) has to satisfy@6#,
L1 , S1 , S2 , andS3 can be expressed as linear functions of
L2 andS4 , which remain so far as arbitrary. Now, in view of
Eq. ~2.4!, the relation

L2523~Z21!S4 ~2.6!

is satisfied for a givenZ. Furthermore, prescribing a given
x leads to the equation
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Substitution of Eq.~2.6! into Eq. ~2.7! yields a quadratic
equation forS4 . Sinceg(r ) is a positive definite quantity,
G(t) cannot be zero for real and positivet. Therefore,L2
must be positive. This in turn implies@cf. Eq. ~2.6!# thatS4
must then be negative and so out of the two roots of the
quadratic equation one can only take the one given by
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Notice that even in this case, depending on the choice ofZ
andx, S4 may be~a! indeed negative ifx.xPY, ~b! positive
if xPY(ZPY2 1

3)/(Z2 1
3),x,xPY, or ~c! complex if

x,xPY(ZPY2 1
3)/(Z2 1

3). This takes into account the fact
thatZ.ZPY, which is the obvious choice. Case~b! leads to
a g(r ), which is a real function but exhibits nonphysical
features, while case~c! yields a complex RDF. The appear-
ance ofZPY andxPY in Eq. ~2.8! and in the above inequali-
ties is not fortuitous but due to the fact that the proposal~2.5!
may be understood as the simplest extension of the PY
theory ~which corresponds toL25S450).

OnceS4 has been determined, the procedure is completed
upon substitution in the corresponding equations. Two addi-
tional results, not explicitly stated in Ref.@6# but that will be
used below, are now given. The first one concerns the value
of the derivative of the RDF at contact, a quantity that has
been a subject of recent interest@10–12# and whose expres-
sion as arising in the RFA method is

g8~11!5
1

12h

L2S31~L22L1!S4
S4
2 . ~2.9!

The other result has to do with the relation betweeng(11)
and g8(11) with the short wavelength behavior ofS(q),
namely,

S~q!51124hFg~11!
cosq

q2
2@g8~11!

1g~11!#
sinq

q3
1••• G . ~2.10!

In order to get specific results, the method just described
requires as inputZ andx. Since we wantg(r ) to be ther-
modynamically consistent, it is only necessary to chooseZ
asx would follow from Eq.~1.1!. This was already done for
the CS equation of state, Eq.~1.5!, in Ref. @6#. In this paper
we will consider a more refined equation of state constructed
from the knowledge of the first eight virial coefficients@8, 9#,
namely, the Pade´ ~4,3!

Z4,35
111.024 385h11.104 537h220.461 147 2h320.743 038 2h4

122.975 615h13.007 000h221.097 758h3 . ~2.11!

A comparison between the CS and the Pade´ equations of
state shows that the differences between both equations be-
come significant in the metastable fluid region
(h.hF.0.497). In fact, while Z4,3 diverges for
h'h0.0.7405,ZCS does it forh51. The most important
feature for our purposes is the fact thatxCS is always larger
than xPY, but x4,3 becomes smaller thanxPY for
h*0.5604. It must be pointed out that the occurrence of a
threshold value for whichx5xPY is not peculiar to the Pade´
equation of state, but would also happen for any equation of
state yielding a diverging pressure forh,1. However, what
is indeed a property of theZ3,4, not necessarily shared by
those other equations of state, is the fact that the threshold
value coincides almost perfectly with the value associated
@3# with the glass transition, namely,hg.0.56. In terms of
the RFA described above, this means that such a threshold
value may indicate the appearance of a different structure in
the system which would then cease to be a fluid beyond
h.0.5604. Therefore, in the following we will identify the
threshold withhg . We will return to this point later on.

The effect ofZ on the structure of the stable fluid as
prescribed by the RFA outlined above may be assessed from
Figs. 1 and 2. There we have plotted the difference
g(r )2gPY(r ), where the differentg(r ) have either been
taken from simulation@13# or derived with the RFA method
usingZ5ZCS andZ5Z4,3. As a simple extension of the PY
theory, it is satisfactory that the model proposed in Eq.~2.5!
for F(t) succeeds in capturing the major trends observed in
the simulation, providing improvements wheregPY(r ) is less

accurate. This is particularly noticeable close to the contact
value. The improvement over the PY theory in that region
may be further judged from a comparison with estimated
values ofg8(11) recently obtained from Monte Carlo simu-
lation by Smithet al. @12#. These authors give values of the
finite-difference derivative ge8(1

1)[g(11)ln@g(11e)/
y(12e)]/2e, wherey(r ) is the cavity distribution function,
and they sete50.05. For the sake of carrying out a consis-
tent comparison, in Table I we give the values of the~lateral!
finite-difference derivative ge18 (11)[g(11)ln@g(11e)/
g(11)]/ e, also withe50.05, although we could provide the

FIG. 1. Plot of the differenceg(r )2gPY(r ) versus distance for
h50.3403. The solid line refers to the Pade´ ~4,3! equation of state,
the dashed line refers to the Carnahan-Starling equation of state,
and the circles correspond to the simulation results@13#.
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actual value of this derivative; cf. Eq.~2.9!. Once again, the
RFA method provides an accurate description of the struc-
ture close to the contact distance, as seen through the very
good values for the slope of the RDF. This is particularly
striking when using the CS equation of state. It should be
stressed though that the value of the finite-difference deriva-
tive is highly sensitive to the choice of the discretization
interval e, especially for the higher densities. Therefore,
ge18 (11) may differ appreciably fromg8(11). For instance,
in the case of the CS equation of state and forh50.4712,
Eq. ~2.9! yieldsg8(11)5249.49.

Now we turn to the metastable region. We have already
pointed out that the Pade´ ~4,3! equation of state is expected
to be superior to the CS equation in this region because the
latter predicts a finite pressure up toh51. Therefore, one
also expects that the RDF obtained from the RFA method is
more reliable when usingZ4,3 thanZCS and that the differ-
ences between both equations of state will be greater near the
contact point. Note that ash approacheshg from below,
x4,3/xPY goes to 1. This means thatS4 , as given by Eq.
~2.8!, goes to 0 from below. As a consequence,
g8(11);1/S4→2`, as follows from Eq.~2.9!. In terms of
the RDF, this is translated into an abrupt change near the
contact point whenh is close tohg . We illustrate this be-
havior in Fig. 3 forh50.5580. In the scale of Fig. 3~a!, the
three different RDF’s are hardly distinguishable. However,
the enlargement around the contact pointr511 reveals a
clear distinction between them. The features displayed in
Fig. 3~b! may be understood by noticing that, while the con-

tact valuesg(11) for the CS and the Pade´ ~4,3! equations of
state are not all that different,S4 for the latter is almost zero,
so that the corresponding RDF should become very similar
to gPY(r ) ~which corresponds toS450), except in the prox-
imity of r511. A convenient measure of this behavior is
through the ‘‘width’’ d of g(r ) in the neighborhood of the
contact point defined by

d5
g~11!2gPY~1

1!

ug8~11!u
~2.12!

and shown graphically in Fig. 4. Both equations of state
yield decreasing values ofd with increasingh in the meta-
stable region. However, in the case ofg4,3(r ), d→0 as
h→hg . The CS equation of state would only lead to such a
singularity ingCS8 (11) in the limit h→1.

To complement the above analysis, it is instructive to con-
sider the behavior of the structure factorS(q) nearhg . This
is shown in Figs. 5 and 6 forh50.558. Again, no differ-
ences are apparent in the scale of Fig. 5. Apart from this, the
effect ofg8(11) ash→hg may also be ascertained from the
short wavelength behavior ofS(q), as given in Eq.~2.10!.
This becomes manifest in Fig. 6, where one can see that
whereas both the result for the PY approximation and the
one derived from the RFA method using the CS equation of
state have already attained the ‘‘highq’’ limit for q.250, in

FIG. 2. Same as in Fig. 1, but forh50.4843.

FIG. 3. Radial distribution functionsg(r ) for h50.558 ~a! in
the range 1<r<4 and~b! detail of the region close to the contact
point. The solid lines refer to the Pade´ ~4,3! equation of state, the
dashed lines refer to the Carnahan-Starling equation of state, and
the dotted lines correspond to the Percus-Yevick results.

TABLE I. Values ofge8(1
1) as obtained from simulation, from

the Percus-Yevick~PY! theory, and from the RFA method using the
Carnahan-Starling~CS! and the Pade´ ~4,3! equations of state.

h Simulationa PY CS Pade´ ~4,3!

0.1571 -1.5560.02 -1.35 -1.53 -1.59
0.2094 -2.8060.03 -2.30 -2.77 -2.89
0.2618 -4.8960.07 -3.70 -4.80 -5.01
0.3142 -8.1760.10 -5.80 -8.17 -8.55
0.3665 -13.8660.13 -9.00 -13.88 -14.63
0.4189 -23.6460.27 -13.97 -23.77 -25.52
0.4712 -41.2661.34 -21.88 -41.37 -45.82

aReference@12#.
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the case ofZ4,3 this practically happens forq.5000, a value
that roughly coincides with 3d21. The fact that in the range
q.250 the curves corresponding to PY and the Pade´ ~4,3!
are indistinguishable is again related to the almost zero value
for S4 .

Before we close this section, some comments on the re-
sults one gets with the RFA method forh.hg are pertinent.
Both in the PY approximation and usingZCS, the method
would in principle lead to ‘‘meaningful’’ RDF’s and struc-
ture factors up toh51. These, however, would have the
drawback~inherent in the corresponding equations of state!
of missing the fact that ath0,1 the system should reach a
crystalline close-packed structure, so their value is question-
able even in the metastable fluid region. In the case of
Z4,3, as pointed out above, ifh.hg , S4 first becomes posi-
tive and then complex@whenx4,3,xPY(ZPY2 1

3)/(Z4,32
1
3),

i.e., h.0.6841#. A positive S4 leads to a pole inG(t) @as
defined in Eq.~2.1!# on the positive real axis, which in turn
implies the unphysical result that the correspondingg(r )
grows exponentially withr . If one overlooks this feature and
proceeds with the calculation ofS(q) through Eq.~2.2!, the
resulting ‘‘structure factor’’ appears to have a ‘‘reasonable’’
shape. However, taking the inverse Fourier transform of the
analytical expression that one obtains forS(q), yields a non-
vanishing ‘‘g(r )’’ for r,1, which is again unphysical. The
conclusion is then that the RFA method is clearly indicating
that the Pade´ ~4,3! equation of state is only useful for the
fluid phase ~including a metastable fluid region!, i.e.,
h<hg . It is interesting to mention that Sanchez@9# had
already suggested this to be the case.

III. DISCUSSION

The results given in the preceding section lend themselves
to further elaboration. First of all, it should be clear at this
stage that the RFA method is particularly advantageous, as
compared to the integral equation approach, in the sense that
all results are analytic. It is true that the method was devised
specifically for hard spheres and this might be regarded as a
limitation. However, the key role played by the hard-sphere
interaction in perturbation theories as well as the use of the
RFA method for other closely related systems@14# provides
the proper perspective to assess such limitation. So far, only

the two lowest-order rational approximations of the auxiliary
functionF(t) defined in Eq.~2.1! have been considered. In
principle, one could consider higher orders by fixing some
extra quantities. In view of the comparison with the simula-
tion results, one would resonably expect that the agreement
between simulation and the results of the RFA method,
which is already very good, could even improve on increas-
ing the order.

In this paper we have applied the method to study the
structure of the hard-sphere fluid both in thestableand in the
metastableregions. We performed a comparison between the
results obtained from the CS and the recently derived Pade´
~4,3! equations of state. In the stable fluid region both equa-
tions lead to similar RDF’s that improve significantly the
agreement of the PY theory with simulation, especially near
the contact point. For the metastable branch, however, the
two equations of state give rise toqualitativelydifferent pre-
dictions. In the case of the CS equation, the RFA method
provides a plausible RDF up to a packing fractionh51,
although we are fully aware that such an RDF should be
meaningless beyond the crystalline close-packing value
h05pA2/6. On the other hand, when using the Pade´ ~4,3!, a
thresholdvaluehg50.5604 exists, beyond which the struc-
ture of the system as predicted by the RFA method becomes
unphysical. As pointed out earlier on, this threshold value
may depend on the equation of state one uses. The question
is then whether this numerical estimate will remain unaltered
if a different but still accurate equation of state is considered.
The recent evidence clearly indicates that the real equation of
state of the hard-sphere fluid should include a divergence at
the close-packing fractionh0 . Thus, by considering Alder-
Hoover approximants@15#, which explicitly contain a simple
pole ath0 , we may attempt to answer such a question. It is
rewarding that the Alder-Hoover approximants~3,3! and
~4,3! yield the estimates 0.5545 and 0.5620 forhg , respec-
tively. The expectation is therefore that if higher-order virial
coefficients were to become available in the future, the cor-
responding Pade´ approximants will not change appreciably
the estimate of the threshold value. The agreement between
the estimated values ofhg and the one associated in the
literature with the glass transition@3# prompts us to conclude
that the method is capable of not only achieving thermody-

FIG. 4. ‘‘Width’’ d as defined in Eq.~2.12! versus the packing
fractionh. The solid line refers to the Pade´ ~4,3! equation of state,
while the dashed line refers to the Carnahan-Starling equation of
state.

FIG. 5. Structure factorS(q) versus wave numberq for
h50.558. The solid line refers to the Pade´ ~4,3! equation of state,
the dashed line refers to the Carnahan-Starling equation of state,
and the dotted line corresponds to the Percus-Yevick result.
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namic consistency, but also of indicating the range of densi-
ties in which a given equation of state may represent a fluid.
The key signal of the transition point is the dramatic increase
of the magnitude of the slopeg8(11) as one approaches
hg . On physical grounds, this could be associated with the
development of a certain effective ‘‘stickiness’’ for
h→hg , a notion that has also been suggested for hard
spheres in other contexts@16#.

It is instructive to examine the question of whether the
RFA method could also tell us something about the glass.
Although admittedly not on very solid grounds, the follow-
ing speculative arguments indicate that the answer may be in
the affirmative sense. The equation of state of the glass is
very much different than that of the fluid and~empirically!
assumed to be of the general form

Zglass5
A

12h/hRCP
. ~3.1!

HereA is a constant. It must be pointed out that the value of
hRCP, the random close-packing fraction, is not known pre-
cisely, although reasonable estimates are available@17#. For
our purposes, the only important aspect is that it indicates the
density at whichZglassdiverges, and we will provide our own
estimate below. Since Eq.~3.1! does not representthe fluid
phase, the method implies thatS4 as given in Eq.~2.8! can-
not be negative in the rangehg,h,hRCP. Therefore, in
that range either it is positive or it is complex. Due to the fact
that a change in the structure of the system occurs at

h5hg , we conjecture, guided by the previous results con-
cerning the fluid phase, that this feature should be reflected
through a change in the qualitative character ofS4 . Two
possibilities arise whenh approacheshg from above: either
S4 changes from positive to negative or it changes from com-
plex to ~positive! real. At h5hg , the first change leads to
the requirement~i! xglass5xPY @with xglass obtained from
Zglass using Eq. ~1.1!#, while the second one implies~ii !
xglass5xPY(ZPY2 1

3)/(Zglass2
1
3), in agreement with condi-

tions ~a!–~c! for S4 stated in Sec. II. The pressure should be
finite and continuous athg , so thatZglass5Z4,3 at this pack-
ing density. On the other hand, since it has been recently
suggested@3# that the pressure exhibits a change in slope on
going from the fluid phase to the glass, we stick to possibility
~ii !. From these two conditions we findA52.765 and
hRCP50.6448. It is indeed striking that, as it occurred al-
ready in the case ofhg , the estimate provided by the method
for hRCP is in excellent agreement with those in the literature
@3, 17# and the value ofA is close to the one corresponding
to the fit of simulation results (A52.67) @3#.
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Phys.83, 1223~1994!.

@13# J. A. Barker and D. Henderson, Annu. Rev. Phys. Chem.23,
439 ~1972!.

@14# S. Bravo Yuste and A. Santos, J. Chem. Phys.99, 2020~1993!;

J. Stat. Phys.72, 703~1993!; Phys. Rev. E48, 4599~1993!; J.
Chem. Phys.101, 2355~1994!.

@15# B. J. Alder and W. G. Hoover, inPhysics of Simple Liquids,
edited by H. N. V. Temperley, J. S. Rowlinson, and G. S. R.
Rushbrooke~North-Holland, Amsterdam, 1968!, p. 106; J. A.
Devore and E. Schneider, J. Chem. Phys.77, 1067~1982!.

@16# S. Shinomoto, J. Stat. Phys.32, 105 ~1983!; A. R. Denton, N.
W. Ashcroft, and W. A. Curtin, Phys. Rev. E51, 65 ~1995!.

@17# J. G. Berryman, Phys. Rev. A27, 1053~1983!.

4826 53S. BRAVO YUSTE, M. LÓPEZ DE HARO, AND A. SANTOS


